### New physics and Ultra-High-Energy Neutrinos

**Crossing the desert - Signatures of New Physics in the Universe** 

Steffen Hallmann DESY Zeuthen, 11/06/2021





## New physics and ultra-high-energy (UHE) neutrinos Agenda



Interaction physics at extreme energies

What surprises may new physics bring us? What have we seen so far?

- UHE neutrino fluxes, and ways to detect them
- Askaryan radio signal & detectors
- Standard model neutrino nucleon cross sections at UHE
- neutrino event signatures at UHE
- Ways to look for new physics at UHE and IceCube measurements at the highest energies
  - Three (there are more!) possibilities:
  - $\rightarrow$  Earth absorption
  - $\rightarrow$  event signatures
  - $\rightarrow$  neutrino flavor ratio

What is ultra-high-energy?

Which fluxes do we expect?

How can we detect them?

### **Ultra-high-energy (UHE) neutrinos**



ultra-high-energy = energies beyond ~10 PeV

Astrophysical neutrinos Cosmogenic neutrinos

+ new physics?

### **Predicted neutrino fluxes (without "new physics")**



### The GZK effect: Why are we confident there are UHE neutrinos?

#### **GZK effect:**

• Above ~10<sup>19.5</sup> eV, cosmic ray protons will interact with photons in the cosmic microwave background and produce neutrinos



- GZK leads to cut-off in cosmic-ray spectrum,
- Consistent with Auger / Telescope Array data



- Guaranteed flux of cosmogenic neutrinos.
   How large?
- Strong dependence on spectrum and proton fraction (proton? iron (56 nucleons)?) of cosmic rays

### **Astrophysical neutrinos**

- IceCube has measured the presence of a diffuse astrophysical neutrino flux
- Flux present up to ~PeV energies, spectral index ~E<sup>-2.5 (-2...-3)</sup>





 (only) first likely point source candidates identified through multimessenger observations: Flaring blazars, Tidal distruption events

### **Astrophysical neutrinos - Optical detection**

- Optical Cherenkov detection method advanced; and successful !
- Several telescopes online: IceCube (ice), ANTARES, KM3NeT (sea), Baikal-GVD (lake),...
- Interactions:



Giunti, Kim, "Fundamentals of Neutrino Physics and Astrophysics"

### **Astrophysical neutrinos - Optical detection**

• Relativistic & charged particles induce visible Cherenkov light

- Display of events detected in IceCube:
- $u_{\mu}$  $\nu_e$ +NC IceCube, simulated ~10 PeV Or KM3NeT: http://www.cherenkov.nl





### **Astrophysical neutrinos - Optical detection**

But: Visible light has ~50-100m attenuation length in ice/water



Scaling the ice/water Cherenkov technology to measure cosmogenic neutrinos is not cost-effective

Are there other options?

### **Detection methods for UHE neutrinos**



|                              | <b>Optical Cherenkov</b>                         | Radio                     | Acoustic               |
|------------------------------|--------------------------------------------------|---------------------------|------------------------|
| Medium                       | Ice / water                                      | lce / air / (salt / moon) | Water / (ice / salt)   |
| Threshold energy             | ~1 GeV                                           | ~10 PeV                   | ~104 PeV               |
| Energy dependence            | $\propto E_{\mu}$ ; $\propto E_{\text{cascade}}$ | $\propto E_{\nu}^2$       | $\propto E_{ u}^2$     |
| Effective volume             | $\propto E_{\nu}$ ; ~ fixed                      | $\propto E_{\nu}^3$       | $\propto E_{\nu}^{23}$ |
| Signal attenuation<br>length | ~50-100m                                         | ~1km                      | ~10km                  |

Radio neutrino detection: Askaryan emission

**Current/Planned detectors** 

### **Radio emission from particle showers**

#### Askaryan

- Many high energy  $\gamma$ ,  $e^-$ ,  $e^+$  in a shower
- In the medium (ice/air): only electrons
- shower particles interact with particles in the ice/air





### **Radio emission from particle showers**

W

#### Askaryan

• Time varying negative charge excess (~20%)

- Radio emission in MHz GHz range
- Constructive interference @ Cherenkov angle





Ν

### **Radio detection of UHE neutrinos in ice**

- Radio attenuation length in ice: few km
- Radio-quiet environment: Antarctica, Greenland
- No neutrinos detected yet
- But: ultra-high energy cosmic-ray air showers detected regularly
- Calibration Pulse LPDAs in Trenc Ň x35 Hpol Pulser Vpol

Helper String 2

- in ice:
  - operational: ARA, ARIANNA
  - under construction: RNO-G ~50km<sup>2</sup>
  - future: IceCube-Gen2 Radio ~500km<sup>2</sup>





Credit: Uzair Latif

### Askaryan detection methods: "in-ice"



JINST 16 (2021) 03, P03025

### **Detection methods: Balloon**





ANITA IV (Wikipedia Image)

Image credits: Cosmin Deaconu

### **Detection methods: GRAND surface array**

Plan to instrument large mountain areas with antennas



a) How does the  $\nu N$  cross section behave at UHE?

b) Can we distinguish neutrino flavours at UHE?

We need this to think about: How can <u>new physics</u> show up in a) or b)?

 $E_{\mu}, \theta_{\mu}$ 

 $\mu^{-}(\mu^{+})$ 

### **Deep inelastic scattering**

Neutrinos only interact weakly!



 $v_{\mu}(\overline{v_{\mu}})$ 

DESY. | New Physics and UHE neutrinos | Steffen Hallmann, 11/06/2021

 $E_{\mu}$  [GeV] Ghandi, Astropart.Phys.5:81-110,1996 **20** 



Cross section features at UHE:

- ~identical for  $\overline{\nu}$  and  $\nu$
- no longer grows linearly with energy

### **Neutrino - nucleon cross section**

$$\frac{d^2\sigma}{dxdy} = \frac{2G_F^2 M E_{\nu}}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x,Q^2) + x\overline{q}(x,Q^2)(1-y)^2\right]$$
  
W boson propagator Quark distribution functions

MSTW 2008 NLO PDFs (68% C.L.)  $Q^2 = 10 \text{ GeV}^2$   $Q^2 = 10 \text{ GeV}^2$   $Q^2 = 10 \text{ GeV}^2$   $Q^2 = 10^4 \text{ GeV}^2$  $Q^2$ 

22

x

(a) medium energy: 
$$\sigma \propto G_F^2 s \propto E_{\nu}$$
  
(a) High energy:

 $M_W \approx 80 \, GeV$ 

 Propagation term no longer dominated by W mass

$$Q^2 \to M_W^2$$

$$x_{\min} = M_W^2 / 2m_N E_{\nu}$$

Formaggio, Zeller, *Rev.Mod.Phys.* 84 (2012) 1307-1341

DESY. | New Physics and UHE neutrinos | Steffen Hallmann, 11/06/2021

• Interaction with "sea":  $(1 - y)^2$  suppression less pronounced

### **Event signatures in neutrino telescopes**

• Showers, tracks, and "double bangs" have all been observed in optical Cherenkov telescopes



• Differences in the signatures need to be exploited to get flavour sensitivity

Additional signatures at UHE?

### **Muon energy loss**

- Muon: long lifetime  $au_{\mu} \sim 2.2\,\mu{
  m s}$
- Optical Cherenkov detectors:

long muon track with continuous energy loss during propagation

- + additional **radiative** losses from
  - pair production
  - bremsstrahlung
  - (nuclear interactions)



 At UHE: muons and taus at some point will also produce secondary showers which become visible in also in radio detectors

### Secondary radio showers in from muons and taus

Recall: <y>~0.2, i.e. 80% of energy transferred to the muon/tau



Similar for tau: several >PeV showers at UHE possible

+ showers from tau decay

+ unique radio signal: tau might reach the atmosphere and decay

### Landau-Pomeranchuk-Migdal (LPM) effect

- Bremsstrahlung: Longitudinal momentum transfer to a given scattering center is small (~k/E(E-k))
- Uncertainty principle: Interaction is spread over comparatively long distance, the formation length  $L_f \sim E(E-k)/k$
- $L \lesssim L_f$ : quantum mechanical interference between amplitudes from different scattering centers
- Interference usually destructive

 $\rightarrow$  Decrease of cross-sections for bremsstrahlung & pair production at UHE (or high matter densities)



formation length  $L_f$ 



1953: Lev Landau, Isaak Pomeranchuk 1956: Arkady Migdal: proper QM treatment

### Landau-Pomeranchuk-Migdal (LPM) effect



 $\rightarrow$  Longer, lower multiplicity showers

+ Bremsstrahlung:

cross-section suppressed for low energy photons

+ Pair production:

central part of differential cross-section suppressed (less likely produce e+ e- with similar energy)

 $\rightarrow$  Askaryan emission profile more peaked around the Cherenkov angle

### **UHE event signatures in radio telescopes**





# What about new physics? the spectrum

Acts at pro

.Heavy relics

DM annihila

DM dec

In the following, let's focus on:

How may radio detectors probe new physics at UHE?

And since no radio neutrino has been detected yet:

Affects arrival

• What did IceCube already <u>measure</u> up to  $\leq$  PeV?



# New physics signatures

How does new physics affect cross sections?

Can new physics have unique event signatures?

Can new physics affect the  $\nu$  flavour composition?

# New physics signatures

How does new physics affect cross sections?

Can new physics have unique event signatures?

Can new physics affect the  $\nu$  flavour composition?

### **Earth matter profile**



A.M. Dziewonski, D.L. Anderson, "Preliminary Reference Earth Model" Phys.Earth Planet.Interiors 25 (1981) 297-356

- Neutrino interaction length:  $L_{int} = 1/(\rho_N \cdot \sigma)$ , exponential attenuation:  $\sim e^{-d/L_{int}}$
- Interaction length of neutrinos crossing the mantle?  $m_N \approx 1.67 \times 10^{-24} \,\mathrm{g}, \quad \rho \approx 3 \,\mathrm{g/cm^3}, \quad \sigma_{\nu N} (10^{18} \,\mathrm{eV}) \approx 10^{-32} \,\mathrm{cm^2}$

A: 500 km UHE neutrinos only arrive up to a couple of degrees below the horizon

### **Neutrino Earth absorption**



 $\rightarrow$  Significant absorption above 10 TeV for neutrinos crossing the earth

### **Cross section measurements with IceCube:**

Two approaches:



Interaction inside detector

Accurate measurement of  $E_{\nu}$ , But: limited statistics (~100)



Interaction outside detector

Measure only  $E_{\mu}$  ( <  $E_{\nu}$ ), But: High statistics (~10<sup>4</sup>)

### **IceCube cross section from "showers"**

- Neutrinos from above are unabsorbed, constrain flux  $\times$  cross-section

 $N_d \sim \Phi \cdot \sigma_{\nu N}$ 

• Neutrinos crossing Earth feel absorption

$$N_u \sim N_d \cdot e^{-\tau} \sim N_d \cdot e^{-L\sigma_{\nu N}n_N}$$



### **IceCube cross section from "tracks"**

- For tracks, statistics is much higher (~10<sup>4</sup>),
- Need to derive probability density for  $E_{\nu}$  from the measured  $E_{\mu}$
- Fit cross section normalisation to the event distribution: ~1.3 , consistent with expectation



### What about new physics?

- Cross sections measured up to ~ PeV
- Above 10<sup>7</sup> GeV:
  - probe nucleon structure at  $x \leq 10^{-5}$
  - not accessible at accelerators





### **Example: Mini black holes & Large Extra Dimensions**

Models with large extra dimensions (LEDs)

- SM confined 3+1 dimensional brane
- + bulk dimensions (only feel gravity)

Allows for production of mini black holes (mass M\*) in interactions at sufficiently high energy

- Current collider constraints: M\* ≥ 3-25 TeV (depending on number of extra dimensions)
- 1 extra dimension ruled out (would imply solar system scale modifications to Newtonian gravity)

39

### **Example: Microscopic black holes & Large Extra Dimensions**

Q: At which neutrino energy can  $M^* \sim 3$  TeV be produced?

A: Center-of-mass energy in fixed-target collision:  $10^{-28}$ ----  $M_{\star} = 1 \text{TeV}$  $M^* \approx \sqrt{2E_{\nu} \cdot xm_p}$  $- - M_{\star} = 2 \text{TeV}$  $- M_{\star} = 3 \text{TeV}$  $10^{-30}$  $E_{\nu} \gtrsim 4.5 \times 10^6 \text{ GeV}$  $\dots M_{\star} = 10 \text{TeV}$  $10^{-32}$ -SM tot  $\sigma({
m cm}^2)$  $10^{-34}$  $10^{-36}$  $10^{-38}$  $10^{-40}$  $10^{6}$  $10^{8}$  $10^{9}$  $10^{10}$  $10^{7}$  $10^{5}$  $E_{\nu}(\text{GeV})$ 

### **Event distribution at UHE**

- At ultra-high energies:
  - We will not see many events from more than few degree below horizon
  - But: already some absorption for neutrinos from above horizon:



- Need sufficient statistics (>O(50) events?) to make such a measurement
- Similarly, for other new physics models: new physics / particles typically <u>increase</u> the cross section (e.g. also sphalerons have a predicted M<sub>sph</sub>~10 TeV & large cross section)

DESY. | New Physics and UHE neutrinos | Steffen Hallmann, 11/06/2021

### The cross section might also be lower... Color glass condensate

- With in UHE interactions, smaller and smaller Bjorken x are probed
- Gluon density rises indefinitely in extrapolations towards low x
- At some point: non-perturbative effects must become relevant



DANIEL DOMINGUEZ/CERN

...and the gluon density will saturate

New phase of QCD has been postulated: Colour Glass Condensate

This could strongly suppress cross section!

# New physics signatures

How does new physics affect cross sections?

Can new physics have unique event signatures?

Can new physics affect the  $\nu$  flavour composition?

### **Back to our previous new physics example**

#### Mini black holes & Large Extra Dimensions

- When massive (~ 1-10 TeV) particles decay, they will produce several O(10) decay particles
  - $\rightarrow$  these initiate particle showers, each carrying a fraction of the energy
- Rest mass allows to draw decay particles from the entire Standard Model (and beyond?)
   i.e. no restriction to light particles
  - $\rightarrow$  this may produce unique signatures:

- i.e. in principle, can be constrained by
- Hadronic vs. Electromagnetic showers
- Identification of secondary showers
- Measurement of inelasticity
  - ... how does IceCube measure this?



### **Double-bang signatures measured by IceCube**



# New physics signatures

How does new physics affect cross sections?

Can new physics have unique event signatures?

Can new physics affect the  $\nu$  flavour composition?

### Flavour composition at the source

- Source scenarios:
  - (Photo)hadronic interactions  $\rightarrow$  pion decay & muon decay: ( $\nu_e : \nu_\mu : \nu_\tau$ ) = (1:2:0)
  - if muons suppressed (dense media): ( $\nu_e$  :  $\nu_\mu$  :  $\nu_\tau$ ) = (0:1:0)
  - Neutron decay:  $(\nu_e : \nu_\mu : \nu_\tau) = (1:0:0)$
  - ... and more exotic...

- Composition of flavours often displayed in the "flavour triangle" (sometimes called: ternary plot)
- Each point in the triangle corresponds to a ratio  $(\nu_e:\nu_\mu:\nu_\tau)$



IceCube Coll., arXiv:1412.5106

• By default: analyses assume  $(\nu_e : \nu_\mu : \nu_\tau) = (1:1:1)$  @ Earth ... Q: Why?

### **Flavour composition at Earth**



### IceCube flavour composition at Earth

• Recent IceCube measurement including tau double-bangs:



IceCube Coll., arXiv:2011.03561v1

- Consistent with expectation for  $3\nu$  oscillations
- Tau's still not clearly separated at ~ PeV:
   →error largest in ν<sub>τ</sub> direction
  - ... Identification of all flavours is mandatory for accurate measurement



### New physics and ultra-high-energy (UHE) neutrinos

#### Some reminders...





### + radio emission in air

Geomagnetic



- Time varying transverse current
- Linearly polarised parallel to Lorentz force
- Dominant in air showers

### LPM also in hadronic showers?

• Average longitudinal shower profile from neutrinos interacting in the ice:



J. Alvares-Muñiz, E.Zas arXiv:astro-ph//9906347 (ICRC1999)

- Standard shower profile up to ~1EeV
- At higher energies: Tails from electromagnetic decays of resonances generated early in the shower

### Inelasticity (=Bjorken y) measured by IceCube

For  $\nu_{\mu}$  charged current events, interacting inside the detector



energy of the hadronic shower + muon energy is seen

Can use this to determine





IceCube's event sample agrees with the Standard Model expectation!

### Flavour composition at Earth

