Gravitational Lensing How to make dark matter visible

and what we learn about cosmology with this tool

Hendrik Hildebrandt, Ruhr University Bochum
"Crossing the Desert", 21st May 2021

European Research Council Established by the European Commission

ANNALEN DER PHYSIK.
VIERTE FOLGE. BAND 49.

1. Die Grundlage der allgemeinen Relativitatstheorie; von A. Einstein.

Die im nachfolgenden dargelegte Theorie bildet die denkbar weitgehendste Verallgemeinerung der heute allgemein als ,,Relativitätstheorie" bezeichneten Theorie; die letztere nenne ich im folgenden zur Unterscheidung von der ersteren ,spezielle Relativitätstheorie" und setze sie als bekannt voraus. Die Verallgemeinerung der Relativitätstheorie wurde sehr erleichtert durch die Gestalt, welche der speziellen Relativitätsleichtert durch die Gestalt, welche der speziellen Relativitats-
theorie durch Min kowski gegeben wurde, welcher Mathematiker zuerst die formale Gleichwertigkeit der räumlichen Koordinaten und der Zeitkoordinate klar erkannte und für den Aufbau der Theorie nutzbar machte. Die für die allgemeine Relativitätstheorie nötigen mathematischen Hilfsmittel lagen fertig bereit in dem ,,absoluten Differentialkalkïl", welcher auf den Forschungen von Gauss, Riemann und Christoffel über nichteuklidische Mannigfaltigkeiten ruht und von Ricci und Levi-Civita in ein System gebracht und bereits auf Probleme der theoretischen Physik angewendet wurde. Ich habe im Abschnitt B der vorliegenden Abhandlung alle für uns nötigen, bei dem Physiker nicht als bekannt vorauszusetzenden mathematischen Hilfsmittel in möglichst einfacher und durchsichtiger Weise entwickelt, so da β ein Studium mathematischer Literatur für das Verständnis der vorliegenden Abhandlung nicht erforderlich ist. Endlich sei vorliegenden Abhandlung nicht erforderlich ist. Endlich sei
an dieser Stelle dankbar meines Freundes, des Mathematikers Grossmann, gedacht, der mir durch seine Hilfe nicht nur das Studium der einschlägigen mathematischen Literatur erparte, sondern mich auch beim suchen nach den Feldgleichungen der Gravitation unterstützte.

$8 \pi G$
 $G_{\mu \nu}=-\quad T$ $c^{4}{ }^{\mu \nu}$

+ Robertson-Walker metric => evolving Universe (FLRW)

$G_{\mu \nu}+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$

Velocity-Distance Relation among Extra-Galactic Nebulae.

Cosmological redshift Z

$\lambda_{\text {obs }}$ λ_{em}

$$
=(1+z)=\frac{1}{a}
$$

Expansion depends on contents

- Normal matter
- Electromagnetic radiation (only important in the early universe)

Open universe :
 looks like a
 $\Omega_{0}<1$

Flat universe $\Omega_{0}=1$

Closed universe : looks like the surface of a sphere

Hot big bang

$$
T \propto a^{-1}=(1+z)
$$

Normal (baryonic) matter

$$
\Omega_{b}=?
$$

Fraction of critical density

Normal (baryonic) matter

$\mathbf{\Omega}_{\mathrm{b}}=0.05$

Recombination / CMB

- 400,000 years after big bang temperature low enough for atoms to form
- Before: opaque plasma
- After: transparent neutral gas
- Light emitted from this time (z~1100) can still be seen today
- Black body radiation with temperature of 2.7 K
- Tiny fluctuations in the temperature -> seeds of structure formation

Angular scale

Planck 2015 results XIII.

flat $-\Lambda$ CDM

Normal (baryonic) matter

$\mathbf{\Omega}_{\mathrm{b}}=0.05$

Open Universe?

Expansion depends on contents

- Normal matter
- Electromagnetic radiation
- Dark matter

Dark Matter

$\Omega_{\mathrm{dm}}=$?

Cosmic structure formation

Structure formation

- Small fluctuations around the mean cosmic density present at early times
- Overdensities/underdensities grow over time due to gravitational instability
- Can be described mathematically with perturbation theory
- Growth depends on cosmological parameters
- High-density regions need to be simulated
- Structure growth is a very rich resource of cosmological information

Dark Matter

$\Omega_{\mathrm{dm}}=0.25$

Dark Matter

- Collisionless
- Dissipationless
- Cold
- Just weak interaction and gravity
- WIMPs? Axions? Sterile Neutrinos?
- Alternative: Modification of general relativity

Total matter density

$\mathbf{\Omega}_{\mathrm{m}}=\mathbf{\Omega}_{\mathrm{b}}+\mathbf{\Omega}_{\mathrm{dm}}=0.3$
Open Universe?

Spatial curvature?

Angular scale

Planck 2015 results XIII.

$\Omega_{0}=1+/-0.01$

Expansion depends on contents

- Normal matter
- Electromagnetic radiation
- Dark matter
- - -

$\longmapsto 0.1$ Astronomical Units
SN 2006X, before and after the Type la Supernova Explosion (Artist Impression)

Host Galaxies of Distant Supernovae

Distant Type la Supernovae

Expansion depends on contents

- Normal matter
- Electromagnetic radiation
- Dark matter
- Cosmological constant / dark energy

Energy density of dark energy

$\Omega_{\text {de }}=$?

Energy density of dark energy

$\Omega_{\text {de }}=0.7$

$\Omega_{0}=\Omega_{\mathrm{m}}+\mathbf{\Omega}_{\mathrm{de}}=\mathbf{1}$

Cosmological Constant?

Vacuum energy?

Exotic particles?

Modification of general relativity?

Dark energy equation of state

- Equation of state: $\mathrm{P}=\mathrm{w} \rho \mathrm{c}^{2}$
- Accelerating expansion for $\mathrm{w}<-1 / 3$
- Cosmological constant: $\mathrm{w}=-1$
- Parametrisation of time dependence:

$$
w(a)=w_{0}+w_{a}(1+a) \quad \text { mit } \quad a=1 /(1+z)
$$

COMPOSITION OF THE COSMOS

Observing dark energy

- Distance-redshift relation:

1. Supernovae type la
2. Baryon acoustic oscillations

- + Growth of structures:

3. Galaxy cluster mass function
4. Weak gravitational lensing

Gravitational Lensing

Gravitational lens

Optical lens

Gravitational lens analogue

Spherical abberation!

Cosmic shear

CAPTION

O Galaxy
Light
(O) High-mass
object

$2 p t$ shear correlation functions

Very directly related to the matter power spectrum P_{δ}.

Observation \rightarrow theory

$$
\xi_{ \pm}(\theta)=\left\langle\gamma_{\mathrm{t}} \gamma_{\mathrm{t}}\right\rangle(\theta) \pm\left\langle\gamma_{\times} \gamma_{\times}\right\rangle(\theta)
$$

$$
\begin{gathered}
\xi_{+}(\theta)=\int_{0}^{\infty} \frac{\mathrm{d} \ell \ell}{2 \pi} \mathrm{~J}_{0}(\ell \theta) P_{\kappa}(\ell) ; \xi_{-}(\theta)=\int_{0}^{\infty} \frac{\mathrm{d} \ell \ell}{2 \pi} \mathrm{~J}_{4}(\ell \theta) P_{\kappa}(\ell) \\
P_{\kappa}(\ell)=\frac{9 H_{0}^{4} \Omega_{\mathrm{m}}^{2}}{4 c^{4}} \int_{0}^{\chi_{\mathrm{h}}} \mathrm{~d} \chi \frac{g^{2}(\chi)}{a^{2}(\chi)} P_{\delta}\left(\frac{\ell}{f_{K}(\chi)}, \chi\right) \\
g(\chi)=\int_{\chi}^{\chi_{\mathrm{h}}} \mathrm{~d} \chi^{\prime} p_{\chi}\left(\chi^{\prime}\right) \frac{f_{K}\left(\chi^{\prime}-\chi\right)}{f_{K}\left(\chi^{\prime}\right)}
\end{gathered}
$$

No galaxy biasing on this slide! Cosmic shear typically goes to small scales.

Systematic challenges

- Observational
- Shape measurements
- Redshift distributions
- Theoretical
- Intrinsic alignments
- Baryon feedback

Shape measurements

Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

Cosmic shear before Covid-19

Agreement of WL measurements. All lower than Planck.
HSC-DR1: Hikage et al. (2019)
DES-Y1: Troxel et al. (2018a)
KiDS-VIKING-450: Hildebrandt et al. (2020)

Other probes

Not a single late Universe LSS measurement yields an S_{8} higher than Planck.

KiDS-VIKING-450 redshift calibration

Recalibrating DES redshifts

S_{8} constraints

3.2σ tension between WL and Planck

KiDS-VIKING 450 "gold" sample

KiDS results robust against down-selection of sources.

Wright et al. (2020a,2020b)

KiDS: 1000

KiDS-1000 (DR4)

Key facts

- 1000deg ${ }^{2}$ of ugriZYJHKs imaging
- $8.4 \mathrm{gal} / \mathrm{arcmin}^{-2}$ with shapes

- Cosmic shear improvements:
- Extensive mock tests
- New covariance
- SOM-based $n(z)+$ gold selection
- Three different 2pt statistics

Blinding

Asgari et al. (2021)

Cosmological constraints

1. KiDS-1000 COSEBIs
2. KiDS-1000 band power
3. KiDS-1000 2PCFs
4. KV450 gold (Wright et al. 2020)
5. KV450+DES-Y1 (Asgari et al. 2020)
6. DES-Y1 (Troxel et al. 2018)
7. HSC-Y1 (Hikage et al. 2019)

8. Planck 2018 TT, TE,EE+lowE

$$
\begin{array}{llllll}
\hline S_{8} \equiv \sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5} & 0.65 & 0.70 & 0.75 & 0.80 & 0.85
\end{array}
$$

- Total mass satellite:

2200 kg

- Dimensions:
$4,5 \mathrm{~m} \times 3 \mathrm{~m}$
Sun shield'(Thales Alenia Space)

Telescope (Airbus Defence and Space)

Summary

- Normal matter makes up only 5% of the energy density of the Universe.
- Dark matter can be made visible with gravitational lensing.
- What is dark energy? Cosmological constant?
- Discrepancies in current data $\left(H_{0}, S_{8}\right)$ might be hints to a solution.
- ESA's Euclid satellite will launch in 2022 starten und solve this riddle.

