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* In the following I will use units c = 1, kB = 1, ℏ = 1, but keep MPl
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A bit of history



Primordial black holes

● High energy density in the Universe shortly 
after the Big Bang raises a natural question: 
can some of the fluctuations stay gravitationally 
bound and collapse into black holes?

● Production of primordial black holes 
in the early Universe was proposed by 
● Zeldovich, Novikov (1966)
● Hawking (1971)

● Mass range: from Planck mass (if formed at Planck time) to the 
masses of SMBHs (if formed after about 1 s from the Big Bang)
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Black hole temperature

● Information loss paradox
● Entropy of a body falling into a black 

hole is lost
● Is the second law of thermodynamics 

wrong?
● In classical gravity, the area of a black hole 

(or the sum of areas of a system of black holes)
is also a non-decreasing function of time (Hawking, 1971)

● Bekenstein (1973) suggested that a linear combination of the classical 
entropy and the area of a black hole should be a non-decreasing 
function of time and can be viewed as a generalized entropy

where the BH entropy is proportional to the BH area
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Black hole temperature

● If we formally assume that the entropy of a BH is proportional to the 
area, then we can calculate the temperature

thus, formally, the temperature of the BH is inversely proportional to 
the BH mass

● The heat capacity of the BH is negative

this is very strange: you add energy to a BH and it gets colder.
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Black hole temperature
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● Since the heat capacity of a BH is negative, BH temperature and 
entropy were considered as formal quantities.



Hawking radiation

● Evidently Hawking decided to check, whether BHs can emit radiation 
or not and he found out (Hawking, 1974), that BHs indeed emit 
particles with temperature                     :

● and further:
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Hawking radiation

● We note that Hawking (1974) has established the precise relation 
between BH mass and temperature

where the surface gravity for the BH is

thus

● The precise normalization for the BH temperature allows one to 
establish the relation between the BH area and entropy
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BH entropy microstates

● Is it possible to understand BH entropy from the point of view of 
microstates counting?

● String theory
● Strominger & Vafa (1996) arXiv:hep-th/9601029 – BHs in 5D AdS5

space
● N = 4 supergravity theory, soliton bound states with axion charge QH and 

electric charge QF
degeneracy: 

BH entropy:
● Strominger (1998) arXiv:hep-th/9712251 – BHs in 3D AdS3 space

● Entanglement entropy
● Solodukhin (2011) arXiv:1104.3712
● Almheiri et al (2020) arXiv:2006.06872

● Loop Quantum Gravity
● Rovelli (1996) arXiv:gr-qc/9603063
● Meissner (2004) arXiv:gr-qc/0407052
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A bit of math



Primordial black holes

● Produced by fluctuations of density in the early Universe (Carr 1975)

● – fraction of energy density in PBHs
● – std of energy density fluctuations
● – equation of state parameter
● – mass within horizon
● PBHs production:

● Large fluctuations of density 
● Non-gaussianity

● Small pressure states
● Short period of matter-dominated universe

13

Valerie Domcke, presentation at 
CERN (2017)

PBHs - Dmitry Malyshev - Ringseminar SS 2021

https://indico.cern.ch/event/614097/contributions/2677697/


Hawking radiation

● Hawking (1974, 1975)
● Black holes emit particles with thermal spectrum

● s – spin, Γs – grey body factor
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Evaporation

● Temperature

● Mass loss ~ emission power

● Integrating the mass loss rate,
one can obtain the remaining lifetime:

● 10 MeV, 1015 g, lifetime of the Universe
● 10 GeV, 1012 g, 30 years
● 10 TeV, 109 g, 1 second

15

PBH evaporation rate

Halzen et al, Nature 353 (1991) 
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How to make a small BH

● Black hole with M = 1015 g, T ~ 10 MeV
● Lifetime ~ age of the Universe
● Size ~ nucleus, 10-15 m
● Mass ~ 1000 large oil tankers
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Limits on PBHs for various initial masses

● M < 1015 g
● Have evaporated by now
● Effects on BBN, CMB, background radiation, e.g., gamma-rays

● M ~ 1015 - 1017 g 
● Bright gamma-ray emitters now
● Can be searched for as high energy emitting sources, individual or 

background
● M > 1017 g

● Can be searched for as small gravitating objects (micro lensing)
● Affect the survival of weakly bound binaries
● Can be captured by neutron stars
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PBHs in cosmology and astrophysics

● Dark matter
● A lot of possibilities in terms of initial

mass and density of PBHs
● e.g., Chapline, Nature 253 (1975)

● Supermassive black holes (109 M☉) at
z > 6, e.g., at T < 1 Gyr after Big Bang
● The general star formation is only

starting but we already have large
black holes ~ 109 M☉

● Stellar BH-BH mergers
● Need many BHs with masses ~ few tens of M☉
● e.g., Bird et al., PRL 116 (2016), arxiv:1603.00464

● Constrain cosmological theories on scales much smaller than CMB
● e.g., Linde et al PRD 87 (2013), arxiv:1212.1693
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Madau, Dickinson, ARAA 52 (2014) 
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Star formation rate
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Limits on PBHs from Hawking radiation



Limits on PBHs with initial masses < 1017 g 

● β’ – fraction of energy density in PBHs at the time of formation
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Example of a PBH search

● As an example of the search for evaporating PBHs, let’s have a look in 
the Fermi Large Area Telescope (LAT) data
● Ackermann et al. APJ 857 (2018), arxiv:1802.00100
● Corresponding authors: Christian Johnson, DM, Stefan Funk, Steven Ritz

● Fermi LAT – gamma-ray space telescope
● Eγ from ~ 20 MeV to ~ 1 TeV
● Angular resolution < 1o above 1 GeV

21

5 years of Fermi LAT data
NASA/DOE/Fermi LAT Collaboration

Credits: NASA E/PO, 
Sonoma State University, Aurore Simonnet
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PBH gamma-ray spectrum

● PBHs evaporate to all elementary particles available at temperature T
● The spectrum has contribution both from primary and secondary 

(mostly from hadronic cascades) gamma rays

22

1019

1020

1021

1022

1023

1024

1025

1026

 0.01  0.1  1  10

d2 N
a /

dE
a d

t  
[G

eV
-1

 s-1
]

Ea  [GeV]

TBH = 1 GeV
300 MeV
100 MeV

30 MeV

Carr et al, PRD 81 (2010), arxiv:0912.5297

Instantaneous PBH  gamma-ray spectrum

Total including secondary

Primary gamma-rays

PBHs - Dmitry Malyshev - Ringseminar SS 2021



Detection radius as a function of temperature

● To estimate the domain of sensitivity of Fermi LAT to individual PBHs 
we compare the PBH spectra with the differential sensitivity 
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Detectability radius and lifetime

● If we include the motion of PBHs relative to the Earth, then most of 
PBHs with temperatures below ~ 50 GeV would appear as moving 
gamma-ray sources
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Search for PBHs in Fermi Catalogs

● Compare the PBH spectra with 3FGL spectra
● An example of a matching spectrum (J0342.8-1321) 

25

Christian Johnson
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Example of a PS with a proper motion
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● Fermi LAT is sensitive to PBHs with 
● temperatures at few tens of GeV
● lifetime of a few years
● distances ~ 0.01 – 0.1 pc

● A typical PBH with these parameters will shift a few degrees during 
the several years – a moving  source in the Fermi-LAT data

● We looked for moving sources with hard spectra among the non-
identified Fermi LAT sources

● No candidates were found

Christian Johnson
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Search for individual PBHs in Fermi-LAT data

● Since no PBH candidates were detected in the Fermi-LAT data we 
put a limit on the PBH evaporation rate

● Monte Carlo simulation
● Generate PBHs with a distribution over temperature, position, velocity
● Increase the density of PBHs until the non-detection probability is less 

than 1%
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Comparison with limits from Cherenkov telescopes

● Fermi LAT limit is better than existing limits on individual PBHs, it is 
comparable to expected HAWC limit after 2 to 5 years of observations
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Comparison with other limits

● The limit on individual PBHs is about 5 orders of magnitude worse than 
the limit from extragalactic gamma-ray background (EGB) even taking 
into account 105 local DM concentration factor 
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Limits on PBHs from Gravitational effects



Limits on PBHs with initial masses >~ 1017 g 

● For PBHs with masses >~ 1017 g the constraints come from various 
gravitational or accretion effects
● There are also a few windows, where PBHs can provide a significant 

fraction of DM
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At M = 2·1017 g = 10-16 M☉:

PBHs - Dmitry Malyshev - Ringseminar SS 2021



Femtolensing of GRBs

● Lensing by PBHs in the 
mass range 1017 – 1020 g 
causes interference
of X-ray photons 
as a function of their
energy

● This interference can 
manifest itself as spectral 
features in the X-ray spectrum
of gamma-ray bursts (GRBs)
observed by, e.g., Fermi 
gamma-ray burst monitor
(GBM)

● However, Katz et al (2017) notice
that point-like approximation for GRB
and lens do not apply and the limits 
are not valid
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Capture by neutron stars

● PBH flying through sufficiently 
dense objects, e.g., neutron stars,
can be captured

● PBH eventually destroys the NS
by accretion

● Existence of NS places a limit on
PBHs in the range 1018 – 1024 g
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Microlensing

● A massive object passing close
to the line of sight towards a 
star causes an increase in 
brightness

● Stars in Kepler field of view
● Backgrounds:

● Stellar flairs
● Passing bright objects (comets)

in the field of view

34

Pietrzynski, Nature 562 (2018)

Flares – modeled by asymmetric light curves
Comet C/2006 Q1

Griest et al. ApJ 786 (2014), arxiv:1307.5798
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Microlensing
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Kepler field of view 
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Figure 5 The red shaded region corresponds to the 95% C.L. upper bound on the PBH mass fraction to DM
in the halo regions of MW and M31, derived from our search for microlensing of M31 stars based on the
“single-night” HSC/Subaru data and fills a large gap in the existing constraints by closing the PBH DM
window around lunar mass scale. To derive this constraint, we took into account the effect of finite source
size, assuming that all source stars in M31 have a solar radius, as well as the effect of wave optics in the
HSC r-band filter on the microlensing event (see text for details). The effects weaken the upper bounds
at M <⇠ 10�7M�, and give no constraint on PBH at M <⇠ 10�11M�. Our constraint can be compared
with other observational constraints as shown by the gray shaded regions: extragalactic �-rays from PBH
evaporation [32], femtolensing of �-ray burst (“Femto”) [33], microlensing search of stars from the satellite
2-years Kepler data (“Kepler”) [18], MACHO/EROS/OGLE microlensing of stars (“EROS/MACHO”) [15],
and the accretion effects on the CMB observables (“CMB”) [34], updated from the earlier estimate [35].
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Subaru/HSC Andromeda observation

Niikura et al, Nature Astronomy, 3 (2019) 
arxiv:1701.02151
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Dynamical effects

● Disruption of stellar clusters
● Stellar clusters , e.g., 

the cluster near the center of 
Eridanus II dwarf galaxy
can be disrupted by 
PBHs > 10 M¤

Brandt, ApJL 824 (2016), arxiv:1605.03665

● Wide binaries
● Binary systems can be

disrupted by encounter 
with PBHs > ~ 100 M¤

e.g., Quinn et al., MNRAS Lett. 396 (2009) 

arxiv:0903.1644
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Dynamical friction

● PBHs with masses > ~ 106 M¤

will be dragged by dynamical
friction to the Galactic center
and can violate constraints
on the mass of the nucleus (DF)

37

Mark Whittle/UVa, lecture notes

1016 1026 1036 1046
10-7

10-5

0.001

0.100

10-17 10-7 103 1013

M/g 11

f

M/M� 11

KEG F WD
NS ML E

WB

mLQ

LSS

WMAP

FIRAS

DF

Carr et al., PRD 94 (2016)
arxiv:1607.06077

PBHs - Dmitry Malyshev - Ringseminar SS 2021

http://people.virginia.edu/~dmw8f/astr5630/Topic12/t12_D_Fric.html


Accretion effects

● Accretion on PBHs with masses > ~ 1 M¤ can affect ionization and 
temperature evolution of the Universe – this can be constrained from 
the observations of CMB (constraints depend on modeling of the 
accretion)
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Other effects

● There are many other effects that can be used to detect or put 
constraints on PBHs
● Millilensing of quasars
● Formation of large

scale structures
● Overheat the distribution

of stars in the disc
● Or even constraints from

overproduction of the 
511 keV line from the GC
DeRocco & Graham, arxiv:1906.07740
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Limits on PBHs with initial masses >~ 1017 g 
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Did LIGO/VIRGO detect DM?
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• Bird et al., PRL 116 (2016), arxiv:1603.00464
• Clesse & Garcia-Bellido (2016), arxiv:1610.08479
• Blinnikov et al., JCAP 11 (2016), arxiv:1611.00541
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Credit: LIGO-Virgo/Northwestern U./Frank Elavsky & Aaron Geller
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Constraints from X-ray and radio

● Radio and X-ray searches for accreting BHs puts constraints on PBH 
interpretation of GW merger events
● Gaggero et al., PRL 118 (2017), arxiv:1612.00457
● Inoue & Kusenko, JCAP, 10 (2017), arxiv:1705.00791
● but cannot yet exclude it
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Summary
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